Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.504
Filtrar
1.
Cell Death Dis ; 15(4): 267, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622131

RESUMO

Isochlorate dehydrogenase 1 (IDH1) is an important metabolic enzyme for the production of α-ketoglutarate (α-KG), which has antitumor effects and is considered to have potential antitumor effects. The activation of IDH1 as a pathway for the development of anticancer drugs has not been attempted. We demonstrated that IDH1 can limit glycolysis in hepatocellular carcinoma (HCC) cells to activate the tumor immune microenvironment. In addition, through proteomic microarray analysis, we identified a natural small molecule, scutellarin (Scu), which activates IDH1 and inhibits the growth of HCC cells. By selectively modifying Cys297, Scu promotes IDH1 active dimer formation and increases α-KG production, leading to ubiquitination and degradation of HIF1a. The loss of HIF1a further leads to the inhibition of glycolysis in HCC cells. The activation of IDH1 by Scu can significantly increase the level of α-KG in tumor tissue, downregulate the HIF1a signaling pathway, and activate the tumor immune microenvironment in vivo. This study demonstrated the inhibitory effect of IDH1-α-KG-HIF1a on the growth of HCC cells and evaluated the inhibitory effect of Scu, the first IDH1 small molecule agonist, which provides a reference for cancer immunotherapy involving activated IDH1.


Assuntos
Carcinoma Hepatocelular , Glucuronatos , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteômica , Apigenina/farmacologia , Apigenina/uso terapêutico , Ácidos Cetoglutáricos/metabolismo , Microambiente Tumoral , Isocitrato Desidrogenase
2.
Front Endocrinol (Lausanne) ; 15: 1360054, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638133

RESUMO

Introduction: Osteoporosis is a systemic age-related disease characterized by reduced bone mass and microstructure deterioration, leading to increased risk of bone fragility fractures. Osteoporosis is a worldwide major health care problem and there is a need for preventive approaches. Methods and results: Apigenin and Rutaecarpine are plant-derived antioxidants identified through functional screen of a natural product library (143 compounds) as enhancers of osteoblastic differentiation of human bone marrow stromal stem cells (hBMSCs). Global gene expression profiling and Western blot analysis revealed activation of several intra-cellular signaling pathways including focal adhesion kinase (FAK) and TGFß. Pharmacological inhibition of FAK using PF-573228 (5 µM) and TGFß using SB505124 (1µM), diminished Apigenin- and Rutaecarpine-induced osteoblast differentiation. In vitro treatment with Apigenin and Rutaecarpine, of primary hBMSCs obtained from elderly female patients enhanced osteoblast differentiation compared with primary hBMSCs obtained from young female donors. Ex-vivo treatment with Apigenin and Rutaecarpine of organotypic embryonic chick-femur culture significantly increased bone volume and cortical thickness compared to control as estimated by µCT-scanning. Discussion: Our data revealed that Apigenin and Rutaecarpine enhance osteoblastic differentiation, bone formation, and reduce the age-related effects of hBMSCs. Therefore, Apigenin and Rutaecarpine cellular treatment represent a potential strategy for maintaining hBMSCs health during aging and osteoporosis.


Assuntos
Alcaloides Indólicos , Células-Tronco Mesenquimais , Osteoporose , Quinazolinonas , Humanos , Idoso , Apigenina/farmacologia , Apigenina/metabolismo , Osteoblastos/metabolismo , Senescência Celular , Fator de Crescimento Transformador beta/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo
3.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542210

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory disorder affecting the colon, with symptomatology influenced by factors including environmental, genomic, microbial, and immunological interactions. Gut microbiota dysbiosis, characterized by bacterial population alterations, contributes to intestinal homeostasis disruption and aberrant immune system activation, thereby exacerbating the inflammatory state. This study assesses the therapeutic efficacy of intraperitoneal (IP) injected flavonoids (apigenin, luteolin, and xanthohumol) in the reduction of inflammatory parameters and the modulation of the gut microbiota in a murine model of ulcerative colitis. Flavonoids interact with gut microbiota by modulating their composition and serving as substrates for the fermentation into other anti-inflammatory bioactive compounds. Our results demonstrate the effectiveness of luteolin and xanthohumol treatment in enhancing the relative abundance of anti-inflammatory microorganisms, thereby attenuating pro-inflammatory species. Moreover, all three flavonoids exhibit efficacy in the reduction of pro-inflammatory cytokine levels, with luteolin strongly demonstrating utility in alleviating associated physical UC symptoms. This suggests that this molecule is a potential alternative or co-therapy to conventional pharmacological interventions, potentially mitigating their adverse effects. A limited impact on microbiota is observed with apigenin, and this is attributed to its solubility constraints via the chosen administration route, resulting in its accumulation in the mesentery.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Propiofenonas , Ratos , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/diagnóstico , Apigenina/farmacologia , Apigenina/uso terapêutico , Luteolina/farmacologia , Luteolina/uso terapêutico , Colo , Inflamação/tratamento farmacológico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Anti-Inflamatórios/farmacologia , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Colite/tratamento farmacológico
4.
Mol Med Rep ; 29(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38516760

RESUMO

Pirarubicin (THP) is one of the most commonly used antineoplastic drugs in clinical practice. However, its clinical application is limited due to its toxic and heart­related side effects. It has been reported that oxidative stress, inflammation and apoptosis are closely associated with cardiotoxicity caused by pirarubicin (CTP). Additionally, it has also been reported that scutellarein (Sc) exerts anti­inflammatory, antioxidant, cardio­cerebral vascular protective and anti­apoptotic properties. Therefore, the present study aimed to investigate the effect of food therapy with Sc on CTP and its underlying molecular mechanism using echocardiography, immunofluorescence, western blot, ROS staining, and TUNEL staining. The in vivo results demonstrated that THP was associated with cardiotoxicity. Additionally, abnormal changes in the expression of indicators associated with oxidative stress, ferroptosis and apoptosis were observed, which were restored by Sc. Therefore, it was hypothesized that CTP could be associated with oxidative stress, ferroptosis and apoptosis. Furthermore, the in vitro experiments showed that Sc and the NADPH oxidase 2 (NOX2) inhibitor, GSK2795039 (GSK), upregulated glutathione peroxidase 4 (GPX4) and inhibited THP­induced oxidative stress, apoptosis and ferroptosis. However, cell treatment with the ferroptosis inhibitor, ferrostatin­1, or inducer, erastin, could not significantly reduce or promote, respectively, the expression of NOX2. However, GSK significantly affected ferroptosis and GPX4 expression. Overall, the results of the present study indicated that food therapy with Sc ameliorated CTP via inhibition of apoptosis and ferroptosis through regulation of NOX2­induced oxidative stress, thus suggesting that Sc may be a potential therapeutic drug against CTP.


Assuntos
Aminopiridinas , Apigenina , Cardiotoxicidade , Doxorrubicina , Ferroptose , Sulfonamidas , Animais , Ratos , Apigenina/farmacologia , Apigenina/uso terapêutico , Apoptose/efeitos dos fármacos , Doxorrubicina/análogos & derivados , Doxorrubicina/toxicidade , Ferroptose/efeitos dos fármacos , NADPH Oxidase 2/efeitos dos fármacos , NADPH Oxidase 2/genética , Estresse Oxidativo/efeitos dos fármacos
5.
Am J Chin Med ; 52(2): 471-492, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38480499

RESUMO

The stimulator of interferon genes (STING) signaling pathway is crucial for the pathogenesis of autoimmune and inflammatory disorders, including acute lung injury (ALI). Apigenin (4[Formula: see text],5,7-trihydroxyflavone) is a natural flavonoid widely found in fruits, vegetables, and Chinese medicinal herbs that exhibits a range of pharmacological effects, such as antibacterial and anti-inflammatory activities. However, the efficacy of apigenin in STING pathway-mediated diseases remains unclear. Accordingly, this study screened Chinese medicines to identify potent agents that reduced the synthesis of type I interferons (IFNs). The results revealed apigenin as a potent compound with low cytotoxicity that markedly reduced the synthesis of type I IFNs in response to STING pathway agonists. Besides, apigenin markedly suppressed innate immune responses triggered by the STING agonist SR-717. Mechanistically, apigenin downregulated IFN beta 1 (IFNB1) expression mediated by the STING pathway via dose-dependent inhibition of STING expression, reduction of dimerization, nuclear translocation of phosphorylated IRF3, and disruption of the association between STING and IRF3. Moreover, apigenin effectively mitigated pathological pulmonary inflammation and lung edema in lipopolysaccharide (LPS)-induced ALI in mice. Apigenin further strongly attenuated the hallmarks of immoderate inflammation (interleukin (IL)-6, IL-1[Formula: see text], and tumor necrosis factor [Formula: see text]) and innate immune responses (IFNB1, C-X-C motif chemokine ligand 10, and IFN-stimulated gene 15) by preventing the activation of the STING/IRF3 pathway both in vitro and in vivo. Importantly, SR-717 significantly reversed the inhibitory effects of apigenin in LPS-induced THP1-BlueTM ISG macrophages. Collectively, apigenin effectively alleviated innate immune responses and mitigated inflammation in LPS-induced ALI via inhibition of the STING/IRF3 pathway. These findings suggest the potential of apigenin as a prophylactic and therapeutic candidate for managing STING-mediated diseases.


Assuntos
Apigenina , Lipopolissacarídeos , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Apigenina/farmacologia , Apigenina/uso terapêutico , Proteínas de Membrana/metabolismo , Imunidade Inata , Inflamação/tratamento farmacológico , Interleucina-6
6.
Int J Biol Sci ; 20(5): 1563-1577, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481798

RESUMO

Fetuin-A, a hepatokine secreted by hepatocytes, binds to insulin receptors and consequently impairs the activation of the insulin signaling pathway, leading to insulin resistance. Apigenin, a flavonoid isolated from plants, has beneficial effects on insulin resistance; however, its regulatory mechanisms are not fully understood. In the present study, we investigated the molecular mechanisms underlying the protective effects of apigenin on insulin resistance. In Huh7 cells, treatment with apigenin decreased the mRNA expression of fetuin-A by decreasing reactive oxygen species-mediated casein kinase 2α (CK2α)-nuclear factor kappa-light-chain-enhancer of activated B activation; besides, apigenin decreased the levels of CK2α-dependent fetuin-A phosphorylation and thus promoted fetuin-A degradation through the autophagic pathway, resulting in a decrease in the protein levels of fetuin-A. Moreover, apigenin prevented the formation of the fetuin-A-insulin receptor (IR) complex and thereby rescued the PA-induced impairment of the insulin signaling pathway, as evidenced by increased phosphorylation of IR substrate-1 and Akt, and translocation of glucose transporter 2 from the cytosol to the plasma membrane. Similar results were observed in the liver of HFD-fed mice treated with apigenin. Collectively, our findings revealed that apigenin ameliorates obesity-induced insulin resistance in the liver by targeting fetuin-A.


Assuntos
Resistência à Insulina , Camundongos , Animais , alfa-2-Glicoproteína-HS/metabolismo , Apigenina/farmacologia , Apigenina/uso terapêutico , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Insulina/metabolismo , alfa-Fetoproteínas/metabolismo
7.
Sci Rep ; 14(1): 5754, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459102

RESUMO

The present study aimed to explore the potential ameliorative effect of apigenin (APG) against diabetes-associated genitourinary complications in rats. A diabetic rat model was induced by the intraperitoneal injection of streptozotocin (STZ). All experimental animals were treated with vehicle or vehicle plus APG at a dose of 0.78 mg/kg/day for 10 days, either once diabetes was confirmed or at the end of the 3rd week after confirmation of diabetes. Rats were sacrificed at the end of the fifth week. In addition to the histological assessment, an analysis of kidney function tests and serum testosterone was performed to assess diabetic genitourinary complications. Gene expression of the mitochondrial fission protein, dynamin related protein 1 (Drp1), was measured in renal and testicular tissues using qRT PCR. APG can increase body weight, reduce blood glucose levels, and improve renal and testicular functions in diabetic rats. APG decreased Drp1 overexpression in diabetic animals' kidneys and testes. In summary, our current work discloses that APG attenuates diabetic genitourinary lesions in rats via suppressing Drp1 overexpression.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , Ratos , Animais , Apigenina/farmacologia , Apigenina/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/patologia , Rim/metabolismo , Dinaminas/metabolismo , Nefropatias Diabéticas/patologia
8.
Sci Rep ; 14(1): 4527, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402367

RESUMO

This pioneering research investigated apigenin potential to augment rooster sperm cryosurvival in an extender model. Apigenin is a natural antioxidant flavonoid showing promise for improved post-thaw sperm function. However, its effects on avian semen cryopreservation remain unexplored. This first study supplemented rooster sperm Lake extender with 0, 50, 100, 200, 400 µmol/L apigenin to determine the optimal concentrations for post-thaw quality. Supplementation with 100 µmol/L apigenin resulted in significant enhancements in total motility (from 41.5% up to 71.5%), progressive motility (18.1% to 29.1%) (p < 0.05), membrane integrity (40% to 68%), mitochondrial function (p < 0.001), viability (37% to 62%) and total antioxidant capacity (p < 0.001) compared to the control. It also substantially reduced percentages of abnormal morphology, reactive oxygen species and apoptosis (p < 0.001). Although 200 µmol/L apigenin significantly enhanced some attributes, effects were markedly lower than 100 µmol/L. Higher doses did not improve cryoprotective parameters. This indicates 100 µmol/L as the optimal apigenin concentration. This represents the first report of apigenin protecting rooster sperm from cryodamage. The natural antioxidant improved post-thaw sperm quality, likely by suppressing oxidative stress and apoptosis. Apigenin shows promise for enhancing rooster sperm cryosurvival.


Assuntos
Preservação do Sêmen , Sêmen , Masculino , Animais , Antioxidantes/farmacologia , Apigenina/farmacologia , Análise do Sêmen , Galinhas , Crioprotetores/farmacologia , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Espermatozoides , Criopreservação/métodos , Suplementos Nutricionais , Motilidade dos Espermatozoides
9.
Theriogenology ; 218: 89-98, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38308957

RESUMO

After ovulation, senescent oocytes inevitably experience reduced quality and defects in embryonic development. Apigenin (API) is a flavonoid with a wide range of pharmacological effects. Therefore, this study examined the protective effects of API on the quality of porcine oocytes during in-vitro ageing and the underlying mechanisms. The results showed that API treatment could reduce the activation rate after aging for 48 h. In addition, API significantly reduced reactive oxygen species, abnormal distribution of mitochondria, early apoptosis in ageing oocytes, increased glutathione, and mitochondrial adenosine triphosphate levels in ageing oocytes. Importantly, API increased the embryonic development rate in aged oocytes. We also examined molecular changes, finding decreased sirtuin 1 expression in in-vitro postovulatory oocytes, but API reversed this effect. Our results suggest that API attenuates the deterioration of oocyte quality during in-vitro ageing, possibly by reducing oxidative stress through the upregulation of sirtuin 1.


Assuntos
Apigenina , Sirtuína 1 , Feminino , Animais , Suínos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Apigenina/farmacologia , Apigenina/metabolismo , Regulação para Cima , Senescência Celular/fisiologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Oócitos/fisiologia
10.
Biomed Pharmacother ; 172: 116251, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330709

RESUMO

Gastric Cancer (GC) is one of the most prevalent cancers worldwide. As the currently available therapeutic options are invasive, new and more benign options are being explored. One of which is Apigenin (Api), a natural flavonoid found in fruits and vegetables, such as celery, parsley, garlic, bell pepper and chamomile tea. Api has known anti-inflammatory, -oxidant, and -proliferative proprieties in several diseases and its potential as an anticancer compound has been explored. Here we systematize the available data regarding the effects of Api on GC cells, in terms of cell proliferation, apoptosis, Helicobacter pylori (H. pylori) infection, and molecular targets. From the literature it is possible to conclude that Api inhibits cell growth in a dose- and time-dependent manner, which is accompanied by the reduction of clone formation and induction of apoptosis. This occurs through the Akt/Bad/Bcl2/Bax axis that activates the mitochondrial pathway of apoptosis, resulting in restriction of cell proliferation. Additionally, it seems that the anti-proliferative potential of Api on GC cells is particularly relevant in a more aggressive GC phenotype but can also affect normal gastric cells. This indicate that this flavonoid must be used in low-to-moderate doses to avoid side-effects induced by disturbance of the normal epithelium. In H. Pylori-infected cells, the literature demonstrates that Api reduces inflammation by diminishing the levels of H. pylori colonization, by preventing NF-kB activation and by diminishing the production of reactive oxygen specimens (ROS). Accordingly, in GC Api seems to regulate different hallmarks of cancer, such as cell proliferation, apoptosis, cell migration, inflammation and oxidative stress, demonstrating its potential has an anti-GC compound.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Apigenina/farmacologia , Apoptose , Antioxidantes , Inflamação
11.
Biosens Bioelectron ; 251: 116123, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38359670

RESUMO

Breast cancer lung metastases (BCLM) are a major cause of high mortality in patients. The shortage of therapeutic targets and rapid drug screening tools for BCLM is a major challenge at present. Mitochondrial autophagy, which involves the degradation of proteins associated with cancer cell aggressiveness, represents a possible therapeutic approach for the treatment of BCLM. Herein, four fluorescent biosensors with different alkyl chains were designed and synthesized to monitor mitochondrial autophagy. Among them, PMV-12 demonstrated the highest sensitivity to viscosity variance, the least impact on polarity, and the longest imaging time. The introduction of the C12-chain made PMV-12 anchored in the mitochondrial membrane without being disturbed by changes of the mitochondrial membrane potential (MMP), thereby achieving the long-term monitor in situ for mitochondrial autophagy. Mitochondria stained with PMV-12 induced swelling and viscosity increase after treating with apigenin, which indicated that apigenin is a potential mitochondrial autophagy inducer. Apigenin was subsequently verified to inhibit cancer cell invasion by 92%. Furthermore, PMV-12 could monitor the process of BCLM in vivo and evaluate the therapeutic effects of apigenin. This work provides a fluorescent tool for elucidating the role of mitochondrial autophagy in the BCLM process and for anti-metastatic drug development.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Neoplasias Pulmonares , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Apigenina/metabolismo , Apigenina/farmacologia , Apigenina/uso terapêutico , Autofagia , Neoplasias Pulmonares/patologia , Mitocôndrias/metabolismo , Corantes
12.
ACS Appl Bio Mater ; 7(3): 1317-1335, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38357783

RESUMO

Wound management in obesity is complicated by excessive exudates from wounded areas, pressure ulcerations due to stacking of the fat layer, and vascular rarefaction. The current study explored the development of biomaterials for reprogramming the altered wound microenvironment under obese conditions. Self-assembled collagen biomatrix with trans and de novo browning activator, apigenin, was fabricated as a soft tissue regenerative wound dressing material. The as-synthesized self-assembled collagen biomatrix exhibited excellent thermal, mechanical, and biological stability with a superior wound exudate absorption capacity. The apigenin self-assembled collagen biomatrix exhibited porous 3-D microstructure that mimicked the extracellular matrix that promoted cell adhesion and proliferation. The apigenin self-assembled collagen multifunctional biomatrix triggered adaptive localized thermogenesis in the subcutaneous fat layer, resulting in the activation of angiogenesis and fibroblast spreading and migration. The in vivo wound healing assay performed in DIO-C57BL6 mice showed faster tissue regeneration within 9 days, with well-defined neo-epidermis, blood vessel formation, thick collagen deposition, minimal inflammation, and significant activation of browning in the subcutaneous adipose layer. This study paves the way forward for the development of specialized regenerative biomatrices that reprogram the obese wound bed for faster tissue regeneration.


Assuntos
Apigenina , Colágeno , Animais , Camundongos , Apigenina/farmacologia , Apigenina/uso terapêutico , Camundongos Endogâmicos C57BL , Colágeno/química , Cicatrização , Obesidade
13.
Front Biosci (Landmark Ed) ; 29(2): 65, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38420803

RESUMO

BACKGROUND: Clinical indexes are often selected as relevant factors for constructing prognostic models of tongue squamous cell carcinoma (TSCC) patients, while factors related to therapeutic targets are less frequently included. As Apigenin (API) shows anti-tumor properties in many tumors, in this study, we construct a novel prognostic model for TSCC patients based on Apigenin-associated genes through transcriptomic analysis. METHODS: The effect of Apigenin (API) on the cell characteristics of TSCC cells was measured by several phenotype experiments. RNA-seq was executed to ensure differentially expressed genes (DEGs) in squamous cell carcinoma-9 (SCC-9) cells after API treatment. Furthermore, reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry were performed to verify the expression of API-related genes. Then, combined with the gene expression data and relevant individual information of TSCC samples acquired from The Cancer Genome Atlas (TCGA), an API-related model was built through Lasso regression and multivariate Cox regression. A receiver operating characteristic (ROC) curve and a nomogram and calibration curve were created to forecast patient outcomes to improve the clinical suitability of the API-related signature. The relationships between the two risk groups and function enrichment, immune infiltration characteristics, and drug susceptibility were analyzed. RESULTS: We demonstrated that API could inhibit the malignant behavior of TSCC cells. Among API-related genes, TSCC cells treated with API, compared to the control group, have higher levels of transmembrane protein 213 (TMEM213) and G protein-coupled receptor 158 (GPR158), and lower levels of caspase 14 (CASP14) and integrin subunit alpha 5 (ITGA5). An 7 API-associated gene model was built through Lasso regression and multivariate Cox regression that could direct TSCC prognostic status and tumor immune cell infiltration. In addition, we acquired 6 potential therapeutic agents for TSCC based on the prognostic model. CONCLUSIONS: Our research suggested the inhibition effect of API on TSCC cells and provided a novel prognostic model combined with therapeutic factors that can guide the prognosis of TSCC and clinical decision-making in TSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias da Língua , Humanos , Neoplasias da Língua/tratamento farmacológico , Neoplasias da Língua/genética , Neoplasias da Língua/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Apigenina/farmacologia , Apigenina/metabolismo , Prognóstico , Língua/metabolismo , Língua/patologia
14.
J Mol Model ; 30(1): 22, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170229

RESUMO

CONTEXT: It is well known that antibiotic resistance is a major health hazard. To eradicate antibiotic-resistant bacterial infections, it is essential to find a novel antibacterial agent. Hence, in this study, a quantitative structure-activity relationship (QSAR) model was developed using 43 DNA gyrase inhibitors, and 700 natural compounds were screened for their antibacterial properties. Based on molecular docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies, the top three leads viz., apigenin-4'-glucoside, 8-deoxygartanin, and cryptodorine were selected and structurally optimized using density functional theory (DFT) studies. The optimized structures were redocked, and molecular dynamic (MD) simulations were performed. Binding energies were calculated by molecular mechanics/Poisson-Boltzmann surface area solvation (MM-PBSA). Based on the above studies, apigenin-4'-glucoside was identified as a potent antibacterial lead. Further in vitro confirmation studies were performed using the plant Lawsonia inermis containing apigenin-4'-glucoside to confirm the antibacterial activity. METHODS: For QSAR modeling, 2D descriptors were calculated by PaDEL-Descriptors v2.21 software, and the model was developed using the DTClab QSAR tool. Docking was performed using PyRx v0.8 software. ORCA v5.0.1 computational package was used to optimize the structures. The job type used in optimization was equilibrium structure search using the DFT hybrid functional ORCA method B3LYP. The basis set was 6-311G (3df, 3pd) plus four polarization functions for all atoms. Accurate docking was performed for optimized leads using the iGEMDOCK v2.1 tool with a genetic algorithm by 10 solutions each of 80 generations. Molecular dynamic simulations were performed using GROMACS 2020.04 software with CHARMM36 all-atom force field.


Assuntos
Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Apigenina/farmacologia , Antibacterianos/farmacologia , DNA Girase/química
15.
Phytomedicine ; 124: 155272, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181530

RESUMO

BACKGROUND: Alzheimer's diseases (AD) and dementia are among the highly prevalent neurological disorders characterized by deposition of beta amyloid (Aß) plaques, dense deposits of highly phosphorylated tau proteins, insufficiency of acetylcholine (ACh) and imbalance in glutamatergic system. Patients typically experience cognitive, behavioral alterations and are unable to perform their routine activities. Evidence also suggests that inflammatory processes including excessive microglia activation, high expression of inflammatory cytokines and release of free radicals. Thus, targeting inflammatory pathways beside other targets might be the key factors to control- disease symptoms and progression. PURPOSE: This review is aimed to highlight the mechanisms and pathways involved in the neuroprotective potentials of lead phytochemicals. Further to provide updates regarding challenges associated with their use and their progress into clinical trials as potential lead compounds. METHODS: Most recent scientific literature on pre-clinical and clinical data published in quality journals especially on the lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin was collected using SciFinder, PubMed, Google Scholar, Web of Science, JSTOR, EBSCO, Scopus and other related web sources. RESULTS: Literature review indicated that the drug discovery against AD is insufficient and only few drugs are clinically approved which have limited efficacy. Among the therapeutic options, natural products have got tremendous attraction owing to their molecular diversity, their safety and efficacy. Research suggest that natural products can delay the disease onset, reduce its progression and regenerate the damage via their anti-amyloid, anti-inflammatory and antioxidant potentials. These agents regulate the pathways involved in the release of neurotrophins which are implicated in neuronal survival and function. Highly potential lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin regulate neuroprotective signaling pathways implicated in neurotrophins-mediated activation of tropomyosin receptor kinase (Trk) and p75 neurotrophins receptor (p75NTR) family receptors. CONCLUSIONS: Phytochemicals especially phenolic compounds were identified as highly potential molecules which ameliorate oxidative stress induced neurodegeneration, reduce Aß load and inhibit vital enzymes. Yet their clinical efficacy and bioavailability are the major challenges which need further interventions for more effective therapeutic outcomes.


Assuntos
Doença de Alzheimer , Produtos Biológicos , Curcumina , Fármacos Neuroprotetores , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Resveratrol/farmacologia , Curcumina/farmacologia , Quercetina/farmacologia , Apigenina/farmacologia , Genisteína/farmacologia , Peptídeos beta-Amiloides/metabolismo , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Produtos Biológicos/farmacologia , Transdução de Sinais , Fatores de Crescimento Neural/metabolismo , Compostos Fitoquímicos/uso terapêutico , Fármacos Neuroprotetores/química
16.
Mini Rev Med Chem ; 24(3): 341-354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38282447

RESUMO

PURPOSE: Diabetes is one of the important and growing diseases in the world. Among the most common diabetic complications are renal adverse effects. The use of apigenin may prevent the development and progression of diabetes-related injuries. The current study aims to review the effects of apigenin in the treatment of diabetic nephropathy. METHODS: In this review, a systematic search was performed based on PRISMA guidelines for obtaining all relevant studies on "the effects of apigenin against diabetic nephropathy" in various electronic databases up to September 2022. Ninety-one articles were obtained and screened in accordance with the predefined inclusion and exclusion criteria. Seven eligible articles were finally included in this review. RESULTS: The experimental findings revealed that hyperglycemia led to the decreased cell viability of kidney cells and body weight loss and an increased kidney weight of rats; however, apigenin administration had a reverse effect on these evaluated parameters. It was also found that hyperglycemia could induce alterations in the biochemical and renal function-related parameters as well as histopathological injuries in kidney cells or tissue; in contrast, the apigenin administration could ameliorate the hyperglycemia-induced renal adverse effects. CONCLUSION: The results indicated that the use of apigenin could mitigate diabetes-induced renal adverse effects, mainly through its antioxidant, anti-apoptotic, and anti-inflammatory activities. Since the findings of this study are based on experimental studies, suggesting the use of apigenin (as a nephroprotective agent) against diabetic nephropathy requires further clinical studies.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Hiperglicemia , Ratos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Apigenina/farmacologia , Apigenina/uso terapêutico , Apigenina/metabolismo , Estresse Oxidativo , Rim , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Hiperglicemia/prevenção & controle , Diabetes Mellitus/patologia
17.
Nat Prod Res ; 38(6): 1054-1059, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37157912

RESUMO

Owing to the potentially harmful adverse effects of current anti-inflammatory drugs, there is a need to identify new alternative substances. Thus, this study aimed to perform a phytochemical analysis of A. polyphylla to identify compounds responsible for its anti-inflammatory activity. Several fractions of the A. polyphylla extract were obtained and evaluated in an ex vivo anti-inflammatory assay using fresh human blood. Among the evaluated fractions, the BH fraction displayed the highest percentage of PGE2 inhibition (74.8%) compared to the reference drugs dexamethasone and indomethacin, demonstrating its excellent potential for anti-inflammatory activity. Astragalin (P1), a known 3-O-glucoside of kaempferol, was isolated from the A. polyphylla extract for the first time. In addition, a new compound (P2) was isolated and identified as the apigenin-3-C-glycosylated flavonoid. Astragalin showed moderate PGE2 activity (48.3%), whereas P2 was not anti-inflammatory. This study contributes to the phytochemical studies of A. polyphylla and confirms its anti-inflammatory potential.


Assuntos
Acacia , Fabaceae , Humanos , Flavonoides/farmacologia , Flavonoides/química , Apigenina/farmacologia , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fabaceae/química , Compostos Fitoquímicos
18.
CNS Neurol Disord Drug Targets ; 23(4): 468-475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37038672

RESUMO

Neurodegenerative diseases (NDDs), such as Alzheimer's and Parkinson's, are the most frequent age-related illnesses affecting millions worldwide. No effective medication for NDDs is known to date and current disease management approaches include neuroprotection strategies with the hope of maintaining and improving the function of neurons. Such strategies will not provide a cure on their own but are likely to delay disease progression by reducing the production of neurotoxic chemicals such as reactive oxygen species (ROS) and related inflammatory chemicals. Natural compounds such as flavonoids that provide neuroprotection via numerous mechanisms have attracted much attention in recent years. This review discusses evidence from different research models and clinical trials on the therapeutic potential of one promising flavonoid, apigenin, and how it can be helpful for NDDs in the future prospects. We have also discussed its chemistry, mechanism of action, and possible benefits in various examples of NDDs.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Apigenina/farmacologia , Apigenina/uso terapêutico , Estresse Oxidativo , Espécies Reativas de Oxigênio/farmacologia , Flavonoides/farmacologia
19.
J Ethnopharmacol ; 321: 117513, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040131

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Penthorum chinense Pursh (PCP) has acknowledged as an edible herbal medicinal plant for the prevention and treatment of alcoholic liver injury (ALI). However, only few of researches focus on the chemical material basis and potential mechanisms of PCP against ALI. AIM OF THE STUDY: Herein, we explored the therapeutic effects of PCP extract against ALI based on the integration of network pharmacology, molecular docking, and experiment validation. METHODS: Based on the standard quality control of PCP herbs by UPLC fingerprint and quantitative determination, 80% ethanol extract fraction of PCP containing more polyphenols, compared to aqueous extract fraction of PCP, were chosen for further experiments. After oral administration of PCP ethanol extract, serum pharmacochemistry based on UPLC-Q-Exactive-MS analysis was implemented to evaluate the potential effective compounds. These absorbed prototypes in PCP were used to construct network pharmacology and predict the potential mechanisms of PCP extract against ALI. Then, the predicted targets and biological mechanisms of PCP extract were validated using animal experiments and molecular docking analysis. RESULTS: Although totally 19 polyphenol compounds were identified in PCP ethanol extract by UPLC-MS analysis, only 18 absorbed prototypes were found in the serum collected from mice at 1 h post-administration with PCP extract. These candidate active compounds were further screened into 13 compounds to construct network pharmacology and 433 targets were identified as PCP targets. GO and KEGG pathway enrichment analyses indicated that the effects of PCP extract would involve in Ras signaling pathway. The animal experiments on chronic ALI model mice shown that the oral administration of PCP can alleviate ALI by attenuating hepatic oxidative stress, inflammation and down-regulating the target proteins in Ras/Raf/MEK/ERK pathway. Molecular docking analysis revealed the good binding ability between the three polyphenols (i.e. quercetin, apigenin, thonningianin B) in PCP with the top contribution in network pharmacology, and these target proteins (Ras, Raf, MEK1/2, and ERK1/2). CONCLUSION: Our results clarified that PCP ethanol extract could effectively alleviate ALI by down-regulating Ras/Raf/MEK/ERK signaling pathway promisingly. Quercetin, apigenin, and thonningianin B may be the active compounds of PCP, attributing to the intervention benefits of PCP against ALI.


Assuntos
Medicamentos de Ervas Chinesas , Saxifragales , Camundongos , Animais , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Polifenóis/metabolismo , Sistema de Sinalização das MAP Quinases , Quercetina/farmacologia , Cromatografia Líquida , Apigenina/farmacologia , Simulação de Acoplamento Molecular , Farmacologia em Rede , Espectrometria de Massas em Tandem , Etanol/farmacologia , Saxifragales/química , Fígado , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Medicamentos de Ervas Chinesas/farmacologia
20.
Int J Pharm ; 649: 123673, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056796

RESUMO

Ischemic heart disease (IHD) is a cardiac disorder in which myocardial damage occurs as a result of myocardial ischemia and hypoxia. Evidence suggests that oxidative stress and inflammatory responses are critical in the development of myocardial ischemia. Therefore, the combination of antioxidant and anti-inflammatory applications is an effective strategy to combat ischemic heart disease. In this paper, polyethylene glycol (PEG)-modified cationic liposomes were used as carriers to deliver apigenin (Apn) with small interfering RNA (siRNA) targeting the receptor for glycosylation end products (RAGE) (siRAGE) into cardiomyocytes to prevent myocardial ischemic injury through antioxidant and anti-inflammatory effects. Our results showed that we successfully prepared cationic PEG liposomes loaded with Apn and siRAGE (P-CLP-A/R) with normal appearance and morphology, particle size and Zeta potential, and good encapsulation rate, drug loading and in vitro release degree. In vitro, P-CLP-A/R was able to prevent oxidative stress injury in H9C2 cells, downregulate the expression of RAGE, reduce the secretion of cellular inflammatory factors and inhibit apoptosis through the RAGE/NF-κB pathway; In vivo, P-CLP-A/R was able to prevent arrhythmia and myocardial pathological injury, and reduce apoptosis and the area of necrotic myocardium in rats. In conclusion, P-CLP-A/R has a protective effect on myocardial ischemic injury and is expected to be a potential drug for the prevention of ischemic heart disease in the future.


Assuntos
Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , RNA Interferente Pequeno/genética , Lipossomos/farmacologia , Apigenina/farmacologia , Antioxidantes/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Apoptose , Anti-Inflamatórios/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...